Alevel數(shù)學考點三角函數(shù)部分總結指導
在 Alevel數(shù)學課程 中,三角函數(shù)一直都是非常重要的一個Alevel數(shù)學考點,在考試中也會以各種題型出現(xiàn),而這一部分卻也往往是很多同學們心中的一個難點。今天A加未來小編就帶大家一
?
在Alevel數(shù)學課程中,三角函數(shù)一直都是非常重要的一個Alevel數(shù)學考點,在考試中也會以各種題型出現(xiàn),而這一部分卻也往往是很多同學們心中的一個難點。今天A加未來小編就帶大家一起來解析一下Alevel數(shù)學考點中有關三角函數(shù)的應用以及解題技巧,希望能夠為大家的數(shù)學備考和提升帶來幫助。

在考試中,其實微分涉及到的技巧相對比較簡單,主要包括基本求導公式、和差積商的求導法則及chain rule等微分技巧;而積分除了基本的積分公式外,涉及到的積分技巧比較多,包括reverse chain rule,by substitution,trigonometric identities,partial fraction,integration by parts等。
首先,我們說“一次”的三角函數(shù),包括sin x,cos x,tan x,cot x,sec x,cosec x.大家首先要知道這六個三角函數(shù)可以直接求積分的,即如下積分公式:
而且大家要知道tan x和cot x求積分時涉及到如下積分技巧:
例如:
同樣cot x的積分大家可以用同樣的方法自己推導一下。
下面我們說“二次”的三角函數(shù),主要包括sin2 x,cos2 x,sinxcosx,tan2x,cot2x,sec2 x,cosec2 x,secxtanx,cosecxcotx。
前三個積分主要涉及到二倍角公式和reverse chain rule,如:
同樣的方法可以得到:
而sinxcosx的積分用到sin2x的展開式,即:
接下來我們知道sec2 x,cosec2 x,secxtanx,cosecxcotx的積分是可以直接用積分公式的,即:
而tan2 x與sec2 x,cot2x與cosec2 x有重要的恒等關系式:tan2 x=sec2x-1;cot2x=cosec2 x-1,所以tan2 x與cot2 x的積分可以直接轉化為sec2 x與cosec2 x進而求解。
下面要說的三角函數(shù)積分也是“二次”的,但上面的技巧并不能解決這類問題,而要用到積化和差的技巧。例如求sin3xcos2x的積分,我們知道sin(3x+2x)=sin3xcos2x+cos3xsin2x,sin(3x-2x)=sin3xcos2x-cos3xsin2x,兩式相加右邊即可得到2sin3xcos2x,而左邊等于sin5x+sinx,這樣sin3xcos2x的積分就轉化為求1/2(sin5x+sinx)的積分,即“積化和差”,本質(zhì)上是利用正弦或余弦的和差角展開公式。同樣的方法大家可以試求下sin5xsin2x,cos3xcosx的積分。
最后要說的三角函數(shù)積分問題主要涉及到下面的兩類積分技巧:
第一種類型我們剛才在求tan x和co tx積分時已經(jīng)講過,第二種類型如:
求cosxsin3x的積分,我們知道sin x求導是cos x,所以原積分等于1/4sin4x,如果不太理解可以反過來求導試試。
?
全部評論
查看更多評論
相關文章
- · ALevel數(shù)學考試完成后如何快速檢查錯題?
- · 可選科目那么多,為什么要首選Alevel數(shù)學課程
- · Alevel數(shù)學S1考點及考試形式解析
- · alevel課程數(shù)學內(nèi)容和國內(nèi)數(shù)學內(nèi)容有何不同?
- · alevel數(shù)學難不難,怎么學能拿A?
- · Alevel數(shù)學考點三角函數(shù)部分總結指導
- · alevel數(shù)學補習,教你如何高效開展考試復習
- · Alevel數(shù)學難嗎?alevel數(shù)學學習難點分析
- · alevel進階數(shù)學輔導,為什么要選擇這門課?
- · 英國名校數(shù)學專業(yè)Alevel成績要求盤點